Circadian coupling orchestrates cell growth (2025)

References

  1. Chaix, A., Zarrinpar, A. & Panda, S. The circadian coordination of cell biology. J. Cell Biol. 215, 15–25 (2016).

    Article MATH Google Scholar

  2. Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271–290 (1999).

    Article MATH Google Scholar

  3. Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462 (2012).

    Article MATH Google Scholar

  4. Takahashi, J. S. in A Time for Metabolism and Hormones (eds Sassone-Corsi, P. and Christen, Y.) 13–24 (Springer, 2016).

  5. Pett, J. P., Kondoff, M., Bordyugov, G., Kramer, A. & Herzel, H. Co-existing feedback loops generate tissue-specific circadian rhythms. Life Sci. Alliance https://doi.org/10.26508/lsa.201800078 (2018).

  6. Tahara, Y. et al. In vivo monitoring of peripheral circadian clocks in the mouse. Curr. Biol. 22, 1029–1034 (2012).

    Article MATH Google Scholar

  7. Saini, C. et al. Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks. Genes Dev. 27, 1526–1536 (2013).

    Article MATH Google Scholar

  8. Sinturel, F. et al. Circadian hepatocyte clocks keep synchrony in the absence of a master pacemaker in the suprachiasmatic nucleus or other extrahepatic clocks. Genes Dev. 35, 329–334 (2021).

    Article Google Scholar

  9. Yoo, S. H. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl Acad. Sci. USA 101, 5339–5346 (2004).

    Article ADS MATH Google Scholar

  10. Abraham, U. et al. Coupling governs entrainment range of circadian clocks. Mol. Syst. Biol. 6, 438 (2010).

    Article MATH Google Scholar

  11. Le Minh, N., Damiola, F., Tronche, F., Schütz, G. & Schibler, U. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 20, 7128–7136 (2001).

    Article Google Scholar

  12. Finger, A.-M. & Kramer, A. Peripheral clocks tick independently of their master. Genes Dev. 35, 304–306 (2021).

    Article MATH Google Scholar

  13. Buhr, E. D. & Takahashi, J. S. in Circadian Clocks (eds Kramer A. & Merrow, M.) 3–27 (Springer, 2013).

  14. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000).

    Article MATH Google Scholar

  15. Feillet, C., van der Horst, G. T. J., Levi, F., Rand, D. A. & Delaunay, F. Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth. Front. Neurol. 6, 96 (2015).

    Article Google Scholar

  16. Schafer, K. A. The cell cycle: a review. Vet. Pathol. 35, 461–478 (1998).

    Article MATH Google Scholar

  17. Golias, C. H., Charalabopoulos, A. & Charalabopoulos, K. Cell proliferation and cell cycle control: a mini review. Int. J. Clin. Pract. 58, 1134–1141 (2004).

    Article MATH Google Scholar

  18. Satyanarayana, A. & Kaldis, P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28, 2925–2939 (2009).

    Article MATH Google Scholar

  19. Hunt, T. & Sassone-Corsi, P. Riding tandem: circadian clocks and the cell cycle. Cell 129, 461–464 (2007).

    Article MATH Google Scholar

  20. Gérard, C. & Goldbeter, A. Entrainment of the mammalian cell cycle by the circadian clock: modeling two coupled cellular rhythms. PLoS Comput. Biol. 8, e1002516 (2012).

    Article ADS MATH Google Scholar

  21. Droin, C., Paquet, E. R. & Naef, F. Low-dimensional dynamics of two coupled biological oscillators. Nat. Phys. 15, 1086–1094 (2019).

    Article MATH Google Scholar

  22. Glass, L. & Mackey, M. C. From Clocks to Chaos (Princeton Univ. Press, 1988).

  23. Yang, Q., Pando, B. F., Dong, G., Golden, S. S. & van Oudenaarden, A. Circadian gating of the cell cycle revealed in single cyanobacterial cells. Science 327, 1522–1526 (2010).

    Article ADS MATH Google Scholar

  24. Feillet, C. et al. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc. Natl Acad. Sci. USA 111, 9828–9833 (2014).

    Article ADS MATH Google Scholar

  25. Bieler, J. et al. Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells. Mol. Syst. Biol. 10, 739 (2014).

    Article MATH Google Scholar

  26. Bratsun, D. A., Merkuriev, D. V., Zakharov, A. P. & Pismen, L. M. Multiscale modeling of tumor growth induced by circadian rhythm disruption in epithelial tissue. J. Biol. Phys. 42, 107–132 (2016).

    Article MATH Google Scholar

  27. Gaucher, J., Montellier, E. & Sassone-Corsi, P. Molecular cogs: interplay between circadian clock and cell cycle. Trends Cell Biol. 28, 368–379 (2018).

  28. Smaaland, R., Sothern, R. B., Laerum, O. D. & Abrahamsen, J. F. Rhythms in human bone marrow and blood cells. Chronobiol. Int. 19, 101–127 (2002).

    Article Google Scholar

  29. Bjarnason, G. A. & Jordan, R. Circadian variation of cell proliferation and cell cycle protein expression in man: clinical implications. Prog. Cell Cycle Res. 4, 193–206 (2000).

    Article MATH Google Scholar

  30. Bjarnason, G. A. et al. Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. Am. J. Pathol. 158, 1793–1801 (2001).

    Article MATH Google Scholar

  31. Brown, W. R. A review and mathematical analysis of circadian rhythms in cell proliferation in mouse, rat, and human epidermis. J. Investig. Dermatol. 97, 273–280 (1991).

    Article MATH Google Scholar

  32. Barbason, H. et al. Circadian synchronization of liver regeneration in adult rats: the role played by adrenal hormones. Cell Prolif. 22, 451–460 (1989).

    Article Google Scholar

  33. Winfree, A. T. Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967).

    Article ADS MATH Google Scholar

  34. Winfree, A. T. The Geometry of Biological Time (Springer, 1980).

  35. Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence Vol. 19 (Springer, 1984).

  36. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    Article MATH Google Scholar

  37. Finger, A.-M. et al. Intercellular coupling between peripheral circadian oscillators by TGF-β signaling. Sci. Adv. 7, eabg5174 (2021).

    Article ADS MATH Google Scholar

  38. Yang, M. et al. TGF-β-Induced FLRT3 attenuation is essential for cancer-associated fibroblast-mediated epithelial-mesenchymal transition in colorectal cancer. Mol. Cancer Res. 20, 1247–1259 (2022).

    Article MATH Google Scholar

  39. Melisi, D. et al. LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol. Cancer Ther. 7, 829–840 (2008).

    Article MATH Google Scholar

  40. Kim, S., Lee, J., Jeon, M., Lee, J. E. & Nam, S. J. Zerumbone suppresses the motility and tumorigenecity of triple negative breast cancer cells via the inhibition of TGF-β1 signaling pathway. Oncotarget 7, 1544–1558 (2016).

    Article MATH Google Scholar

  41. Gutu, N., Binish, N., Keilholz, U., Herzel, H. & Granada, A. E. p53 and p21 dynamics encode single-cell DNA damage levels, fine-tuning proliferation and shaping population heterogeneity. Commun. Biol. 6, 1196 (2023).

    Article Google Scholar

  42. Börding, T., Abdo, A. N., Maier, B., Gabriel, C. & Kramer, A. Generation of human CrY1 and Cry2 knockout cells using duplex CRISPR/Cas9 technology. Front. Physiol. 10, 449711 (2019).

    Article Google Scholar

  43. Ector, C. et al. Time-of-day effects of cancer drugs revealed by high-throughput deep phenotyping. Nat. Commun. 15, 7205 (2024).

    Article MATH Google Scholar

  44. Rahimi, A. M. et al. Expression of α-tubulin acetyltransferase 1 and tubulin acetylation as selective forces in cell competition. Cells 10, 390 (2021).

    Article MATH Google Scholar

  45. Nagoshi, E. et al. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693–705 (2004).

    Article MATH Google Scholar

  46. Kaeffer, B. & Pardini, L. Clock genes of mammalian cells: practical implications in tissue culture. In Vitro Cell. Dev. Biol.: Anim. 41, 311–320 (2005).

    Article MATH Google Scholar

  47. Li, N. et al. Suprachiasmatic nucleus slices induce molecular oscillations in fibroblasts. Biochem. Biophys. Res. Commun. 377, 1179–1184 (2008).

    Article MATH Google Scholar

  48. Rogers, P. M., Ying, L. & Burris, T. P. Relationship between circadian oscillations of Rev-erbα expression and intracellular levels of its ligand, heme. Biochem. Biophys. Res. Commun. 368, 955–958 (2008).

    Article Google Scholar

  49. Abaandou, L., Quan, D. & Shiloach, J. Affecting HEK293 cell growth and production performance by modifying the expression of specific genes. Cells 10, 1667 (2021).

    Article Google Scholar

  50. Erzurumlu, Y., Catakli, D. & Dogan, H. K. Circadian oscillation pattern of endoplasmic reticulum quality control (ERQC) components in human embryonic kidney HEK293 cells. J. Circadian Rhythms 21, 1 (2023).

    Article Google Scholar

  51. Shende, V. R., Goldrick, M. M., Ramani, S. & Earnest, D. J. Expression and rhythmic modulation of circulating microRNAs targeting the clock gene Bmal1 in mice. PLoS ONE 6, e22586 (2011).

    Article ADS Google Scholar

  52. Zheng, L., Seon, Y. J., McHugh, J., Papagerakis, S. & Papagerakis, P. Clock genes show circadian rhythms in salivary glands. J. Dent. Res. 91, 783–788 (2012).

    Article Google Scholar

  53. Beta, R. A. A. et al. Core clock regulators in dexamethasone-treated HEK 293T cells at 4 h intervals. BMC Res. Notes 15, 23 (2022).

    Article MATH Google Scholar

  54. Ramanathan, C., Khan, S. K., Kathale, N. D., Xu, H. & Liu, A. C. Monitoring cell-autonomous circadian clock rhythms of gene expression using luciferase bioluminescence reporters. J. Vis. Exp. https://doi.org/10.3791/4234 (2012).

  55. Pessina, A. et al. High sensitivity of human epidermal keratinocytes (HaCaT) to topoisomerase inhibitors. Cell Prolif. 34, 243–252 (2001).

    Article Google Scholar

  56. Spörl, F. et al. A circadian clock in HaCaT keratinocytes. J. Investig. Dermatol. 131, 338–348 (2011).

    Article MATH Google Scholar

  57. Matsunaga, N. et al. 24-hour rhythm of aquaporin-3 function in the epidermis is regulated by molecular clocks. J. Investig. Dermatol. 134, 1636–1644 (2014).

    Article MATH Google Scholar

  58. Huber, A.-L. et al. CRY2 and FBXL3 cooperatively degrade c-MYC. Mol. Cell 64, 774–789 (2016).

    Article MATH Google Scholar

  59. Qu, M. et al. Circadian regulator BMAL1::CLOCK promotes cell proliferation in hepatocellular carcinoma by controlling apoptosis and cell cycle. Proc. Natl Acad. Sci. USA 120, e2214829120 (2023).

    Article Google Scholar

  60. Rogatsky, I., Hittelman, A. B., Pearce, D. & Garabedian, M. J. Distinct glucocorticoid receptor transcriptional regulatory surfaces mediate the cytotoxic and cytostatic effects of glucocorticoids. Mol. Cell. Biol. 19, 5036 (1999).

    Article Google Scholar

  61. Haubold, C. et al. in Focus on Bio-Image Informatics (eds De Vos, W. H. et al.) 199–229 (Springer, 2016).

  62. Mönke, G., Sorgenfrei, F. A., Schmal, C. & Granada, A. E. Optimal time frequency analysis for biological data – pyBOAT. Preprint at bioRxiv https://doi.org/10.1101/2020.04.29.067744 (2020).

  63. Waskom, M. Seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).

    Article ADS MATH Google Scholar

  64. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article ADS MATH Google Scholar

  65. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article MATH Google Scholar

  66. Gutu, N. RawData_Gutu_et_al_Circadian_Coupling_Orchestrates_Cell_growth. Figshare https://doi.org/10.6084/m9.figshare.28375358.v1 (2025).

Download references

Circadian coupling orchestrates cell growth (2025)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Jeremiah Abshire

Last Updated:

Views: 5964

Rating: 4.3 / 5 (54 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Jeremiah Abshire

Birthday: 1993-09-14

Address: Apt. 425 92748 Jannie Centers, Port Nikitaville, VT 82110

Phone: +8096210939894

Job: Lead Healthcare Manager

Hobby: Watching movies, Watching movies, Knapping, LARPing, Coffee roasting, Lacemaking, Gaming

Introduction: My name is Jeremiah Abshire, I am a outstanding, kind, clever, hilarious, curious, hilarious, outstanding person who loves writing and wants to share my knowledge and understanding with you.